

ダム分野におけるDam Dashboard (ダムダッシュボード)の活用

◎ 株式会社 日立パワーソリューションズ

スケジュール

時刻	コース	内容
10:00 -	1	建設コンサルタント分野におけるDioVISTAの活用
11:00 -	2	ダム分野におけるDam Dashboardの活用 Alによる流入量予測と放流量最適化を実現する、ダム運用 支援ツールDam Dashboardと、そのダム管理・運用支援へ の活用方法をご紹介します。
13:00 -	3	損害保険分野におけるDioVISTAの活用
14:00 -	4	防災行政分野におけるDioVISTAの活用
15:00 -	5	企業防災分野にむけた水害対策BCP支援のご提案
16:00 -	6	DioVISTA Flood Simulator – technology & use case

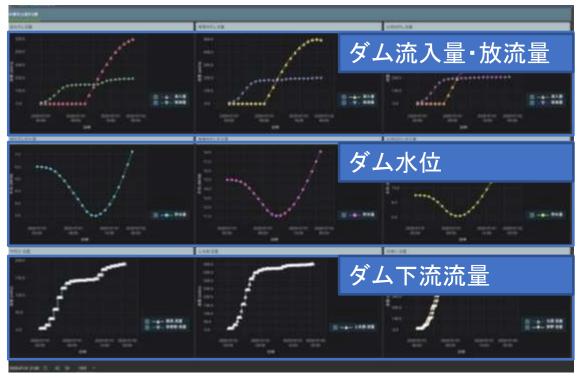
本日の資料を、後日アップロードします。 参加者の方に、リンクをメールにてお知らせします。

もくじ

1. はじめに

- 2. 現場の声
- 3. 提案1:流入量の予測
- 4. 提案2:放流操作案の自動算出
- 5. まとめ

セミナーの目的


- ・社会の大きな変化
 - ウィズコロナ、変わる働き方
 - ・テレワーク対応、電子化、クラウド化
 - ・業務の標準化(脱属人化)
 - 気候変動、水害の激化
 - •「流域治水」: 行政、民間企業、国民一人ひとりが、 意識・行動・仕組みに防災・減災を考慮することが必要
 - ・ダム分野:予測に基づく高度なダム運用(事前放流等)

ダム分野へのご提案

- ・ 機能1: ダム流入量予測で 業務を支援
 - AIとシミュレーションをハイブ リッドさせました
 - 平水と洪水との両方に活用できます
- 機能2: 放流操作案の自動 算出で業務を支援
 - ダム流入量予測に基づき、 最適な放流計画を自動で 算出します

ダムダッシュボード(Dam Dashboard) 画面例 (画面は開発中のものです)

もくじ

1. はじめに

2. 現場の声

- 3. 提案1:流入量の予測
- 4. 提案2:放流操作案の自動算出
- 5. まとめ

現場の声

- ・ 主任技術者になると、事実上、休みがない
 - 気候変動で大雨・洪水が増加
 - 特に洪水期は緊張が続く
 - 担当地域から遠くに出かけられない
- 主任技術者が離職している
 - 新しいなり手もいない
 - 欠員により、組織が機能停止するリスクが高まっている

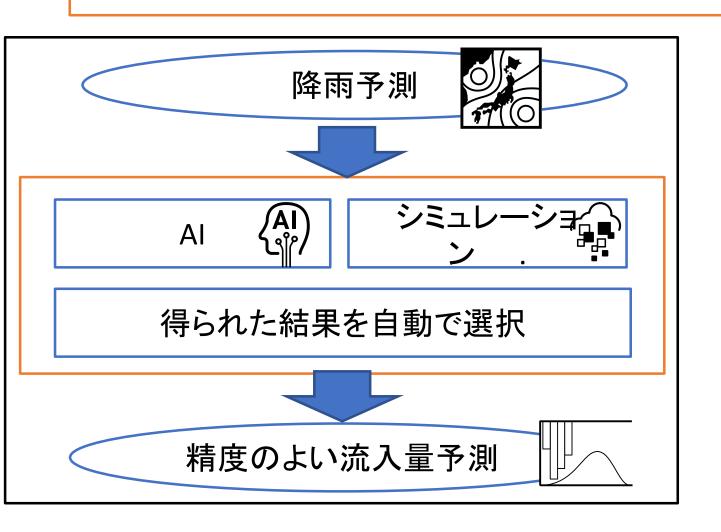
現場の声

- せめて降雨のない通常の日は
 - そこまで経験がない操作員でも判断できるようにしたいが
 - ベテランが何を基に判断しているのか不明
 - ベテランは、経験と勘で決めているのかも?
 - ベテラン並みの意思決定ができるような、支援システムが欲しい
 - いまどき、AIならやってくれるのでは?
- しかし、どう作ればいいかわからない
 - どの業者に相談すればいいのか、わからない

日立パワーソリューションズにご相談ください

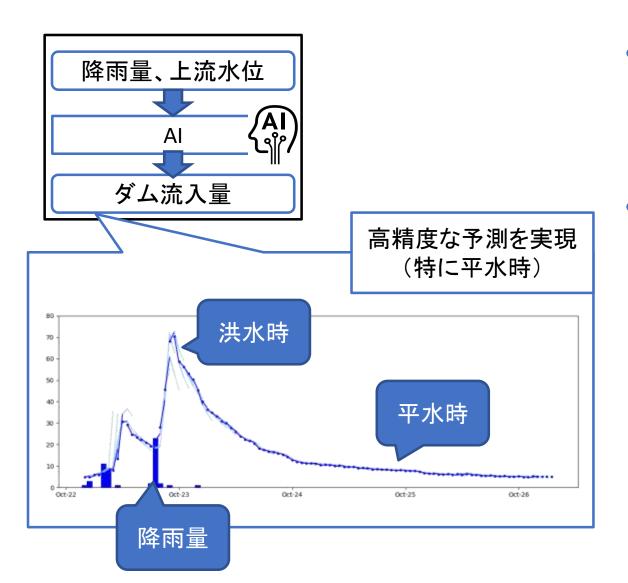
もくじ

- 1. はじめに
- 2. 現場の声


3.提案1:流入量の予測

- 4. 提案2: 放流操作案の自動算出
- 5. まとめ

提案: 流入量の予測



AI と シミュレーションのハイブリッドによる予測

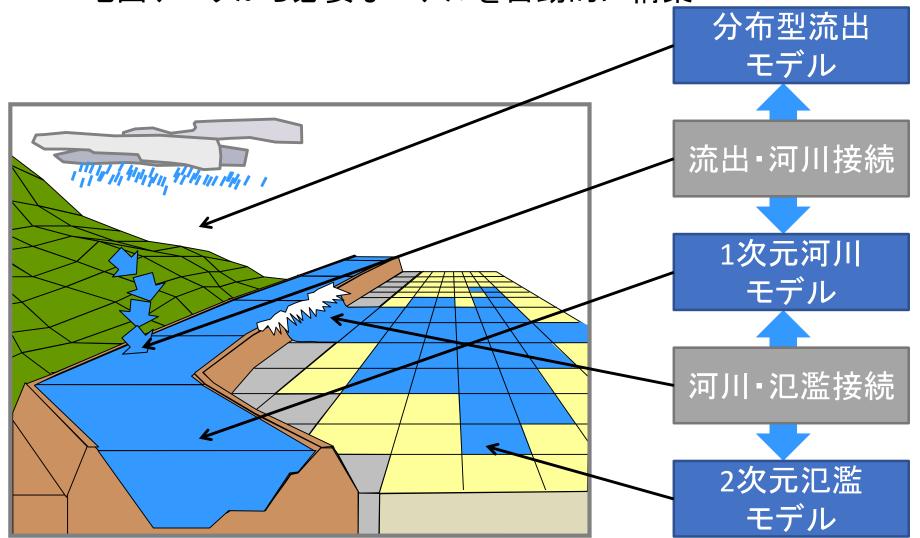
- 平水(多数の事例)にはAIが有利
- 洪水(まれな事例)には シミュレーションが有利
- 両者をハイブリッドさせる

AIIによる予測の例

• AIによるダム流入量の予測

- 入力: 降雨、上流水位
- 出力:ダム流入量
- 上流にダムがある水系
- ・ 高頻度に起こる事象の 高精度予測が期待できる
 - AIは、多くのデータが入手可能な平 水時を得意とする
 - 平水は流量が小さく、地下水、蒸発散、農業用水など様々な要因が顕著に影響するため、シミュレーションによるモデル化よりAIの方が有利

AIの限界とシミュレーションの活用



- AIが洪水を学習するのは、原理的に困難
 - AIは、観測データを学習する必要がある
 - 洪水対策がなされると、出水傾向が変わり、 それ以前のデータは使えなくなる
 - 既往最大洪水を超える洪水は、観測されていない
- シミュレーションは洪水を得意とする
 - 洪水は流量が大きく、流出現象が支配的なため、 流出モデルにより精度よくシミュレーションできる

DioVISTAによるシミュレーション

- 降雨から氾濫までの現象を一体的にシミュレーション
- 地図データから必要なモデルを自動的に構築

水位の再現事例(淀川流域)

対象河川

淀川水系

流域面積: 4,392 km² (琵琶湖流域を除外)

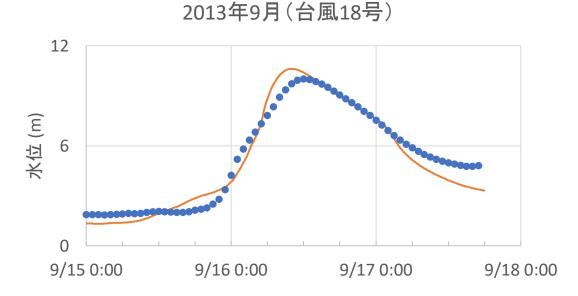
本川 1, 支川 28, ダム 7

分布型、100m

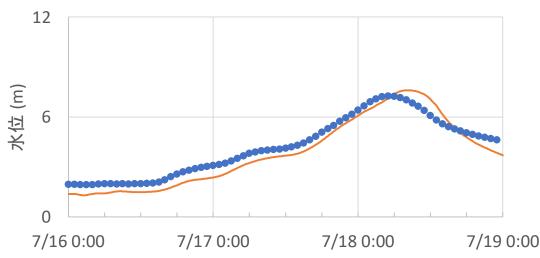
河川モデル

1D不定流、50 m

氾濫モデル


2D不定流、25m

枚方の再現水位



シミュレーションで 高精度な予測を実現 (特に洪水時)

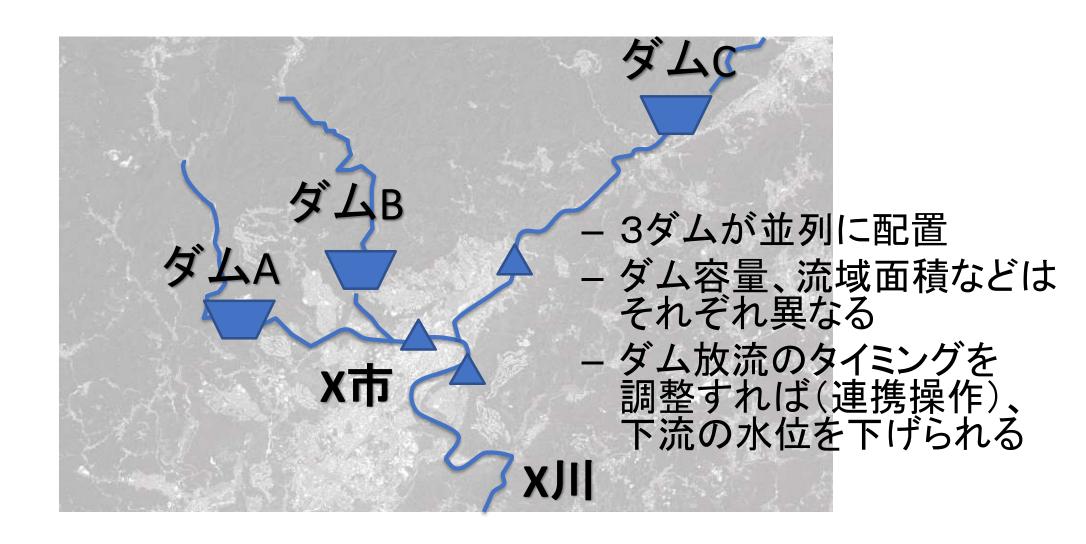
:計算水位

もくじ

- 1. はじめに
- 2. 現場の声
- 3. 提案1: 流入量の予測
- 4. 提案2: 放流操作案の自動算出
- 5. まとめ

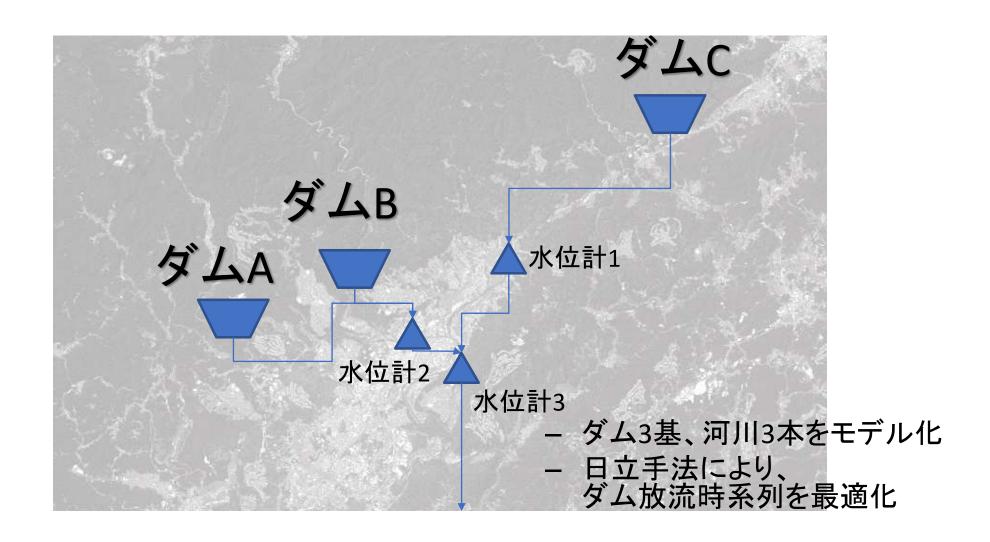
提案:ダム放流操作の支援

最適なダム操作をシミュレーションにより発見


- 1. 予測降雨を入力
- 2. ダム流入量の推定
- 3. ダム放流量時系列(候補)の作成
- 4. ダム水位、下流河川の水位を推定
 - 5. ダム操作結果の良さを評価
 - 6. 最適な結果か判定
 - 7. ダム放流時系列を提示

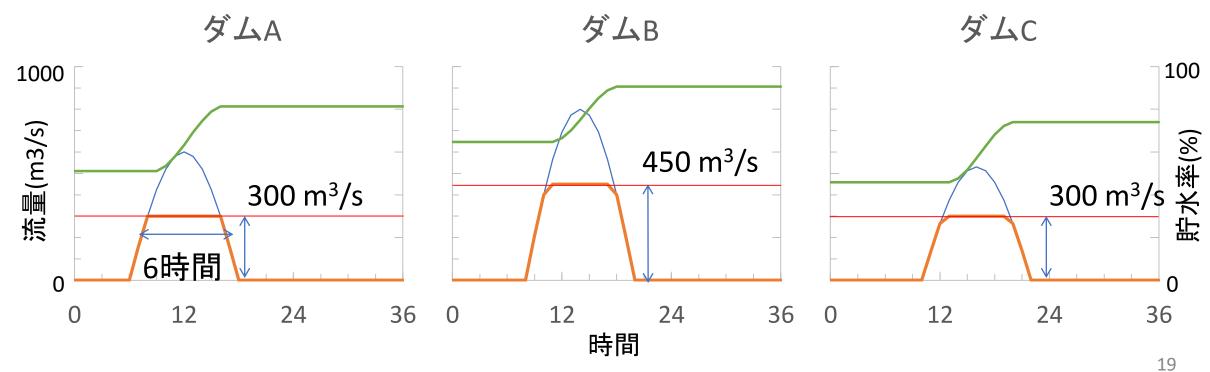
プログレッシブ 動的計画法による作成

- シミュレーションの中で、 試しに放流操作を行う
- 結果が良くなければ、 別の放流操作を試してみる
- これを自動で繰り返し、 最適なダム操作を発見する


実験: X川上流3ダム

X川上流3ダムのモデル化

連携操作なし・事前放流なしの場合


:ダム流入量

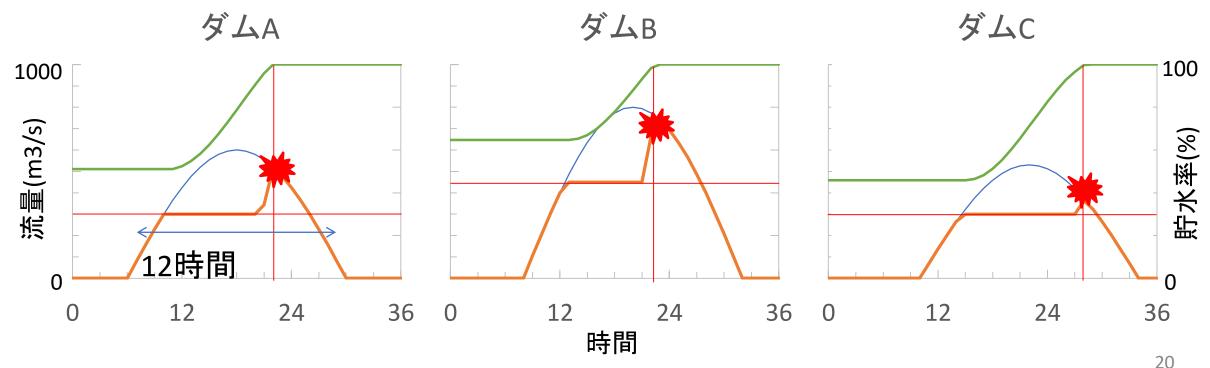
:ダム放流量

:ダム貯水率

計画洪水に対してダムは有効に機能する

- 長さ6時間、ピーク1つの洪水
- それぞれのダムが、一定量方式でピークカット

連携操作なし・事前放流なしの場合



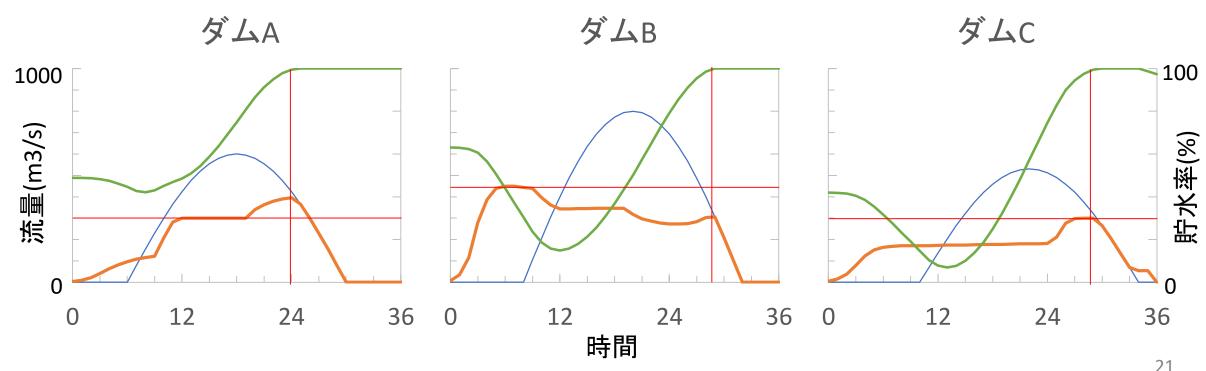
超過洪水により緊急放流に至る

- 長さ12時間、ピーク1つの洪水
- すべてのダムが満杯になり、緊急放流に至る

:ダム流入量 :ダム放流量 :ダム貯水率

: 緊急放流

日立方式で自動算出した操作案

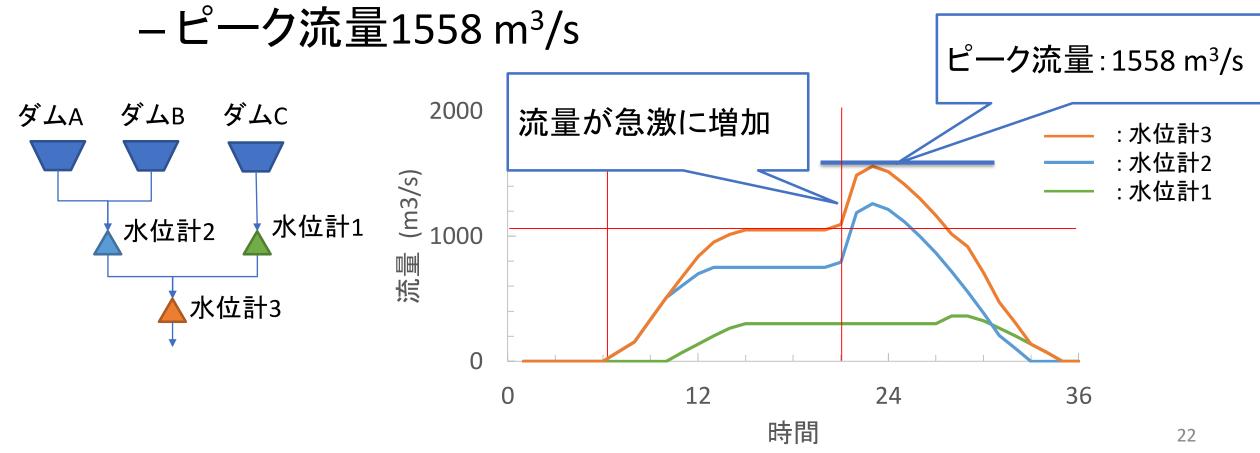

:ダム流入量

:ダム放流量

:ダム貯水率

放流のタイミングを自動的に調整

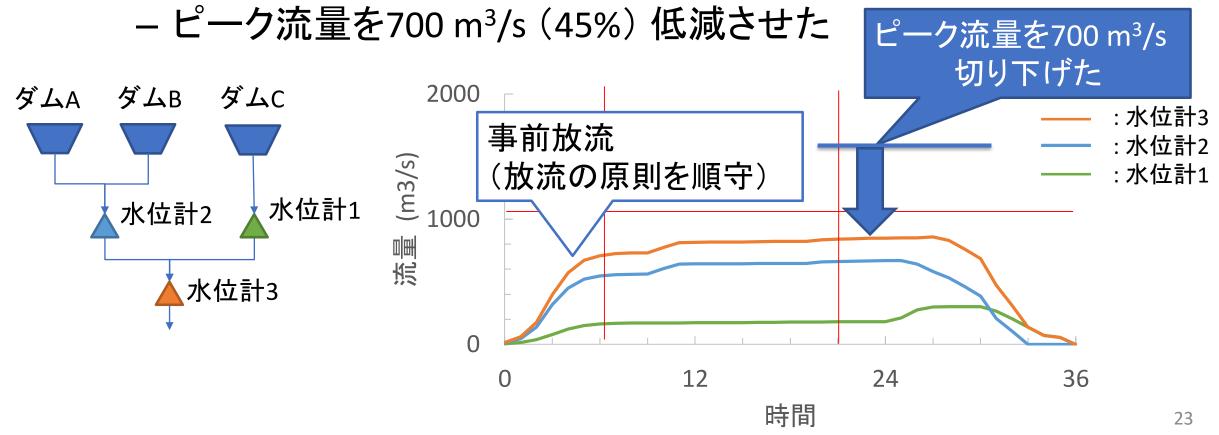
- 最大の容量を持つダムBを優先的に事前放流
- 20時からのダムAの放流に合わせダムBの放流を減らす
- すべてのダムで緊急放流を避けることに成功



連携操作なし・事前放流なしの場合

緊急放流により、下流の流量が計画流量を超過

- 緊急放流が始まると、下流の流量が急激に増加



日立方式で自動算出した操作案

下流河川のピーク流量を半減させることに成功

- 降雨に先立って事前放流を実施
- 洪水中の河川流量がほぼ一定となるよう調整

日立方式の活用方法(案)

- 日立方式は計算時間が短い
 - 36時間分の最適化に要した計算時間: デスクトップPCで3分30秒
- ・ 降雨予測は外れることもあるが...
 - 日立方式の計算時間の短さを活かし、 様々な降雨パターンに対し、それぞれの 最適放流計画を自動で立案させることが できる
 - アンサンブル降雨予測などを入力し、 得られた操作案に基づいて、 実際に取るべき操作を考えることができる

もくじ

- 1. はじめに
- 2. 現場の声
- 3. 提案1:流入量の予測
- 4. 提案2:放流操作案の自動算出

5.まとめ

まとめ

- Dam Dashboard(ダムダッシュボード)は、 流入量予測で業務を支援します
 - AIとシミュレーションをハイブリッドさせました
 - 平水と洪水との両方に活用できます
- ・ 放流操作案の自動算出で業務を支援します
 - ダム流入量予測に基づき、 最適な放流計画を自動で算出します

日立パワーソリューションズにご相談ください

END